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Abstract—Remote sensing data are often sparse relative
to the space-time domains of geophysical processes: no in-
strument observes everywhere, all the time. Remote sens-
ing data are also massive, taken over different, usually non-
nested spatial footprints, and subject to measurement error
biases. Our goal is to infer the true values of a spatially and
temporally continuous geophysical quantity from these ag-
gregated, noisy, and heterogeneous observations. We do this
through a geostatistical model that relates the observations
to the true but not directly observed variable of interest.
This model accounts for spatial correlations, and relation-
ships among different resolutions. Crucially, our estimates
are accompanied by uncertainty measures so we know how
reliable the estimates are. In this talk, we review the basic
principles of our methodology, as they apply to estimating
column carbon dioxide in the planetary boundary layer, in-
ferred from remote sensing observations taken at multiple
scales with differing sensitivities and sampling characteris-
tics.

Index Terms—Spatial statistical inference, change of sup-
port, massive datasets, satellite remote sensing, carbon
dioxide.

I. INTRODUCTION

HIS article describes our work to date developing

methodology for geostatistical (spatial statistical)
data fusion. We regard data fusion as an inference prob-
lem: given two heterogenous input datasets with different
statistical characteristics, how do we optimally estimate
the quantity of interest, and obtain uncertainty measures
associated with these inferences? Spatial statistics [1] pro-
vides a rigorous formalism for modeling spatial data: both
the unknown true quantities of interest and the observa-
tions are described by random variables, and a statisti-
cal model specifies relationships among these variables.
Spatial statistical models quantify relationships between
observations and the true “processes” they measure in a
way that exploits their spatial dependence. Importantly,
these models also make it possible to describe relationships
among quantities that exist at different spatial resolutions.
In statistics this is called the change of support problem
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because the “support” of a random variable is the spatial
unit to which it applies. Spatial statistical model provide
a mechanism for making the desired inferences.

Spatial statistics is a special case of space-time statistics.
The basic concepts were originally developed in two areas:
geostatistics and time series analysis. Geostatistics devel-
oped around problems in mining applications and provides
a set of techniques for making inferences that exploit spa-
tial dependence. Time series analysis exploits temporal
dependence in making inferences from observations over
time. These problems share a common mathematical ba-
sis. The only differences between them are 1) dimensional-
ity: time series are one dimensional, spatial problems are
one, two, or three dimensional, and space-time problems
are four dimensional; and 2) directionality: the fact that
time only flows forward while it is possible to move both
forward and backward in space.

The work described here builds on past, present, and on-
going research in space-time statistics. A key goal of our
efforts is to find computational and mathematical compro-
mises required to bring the power of this elegant formalism
to bear on NASA’s immense remote sensing data holdings.
A recent methodological breakthrough called Fixed-Rank
Kriging (FRK; [2]) now makes this possible. Traditional
geostatistical methods have not been able to handle mas-
sive amounts of data because they require inverting very
large matrices, or make tenuous assumptions about spatial
dependence in order to avoid that requirement.

We demonstrate our methodology by applying it to the
problem of estimating carbon dioxide (CO2) in the plan-
etary boundary layer (PBL) of Earth’s atmosphere using
data from the Atmospheric Infrared Sounder (AIRS), and
synthetic data representative of what the Orbiting Carbon
Observatory (OCO-2) will see. PBL CO2 is an impor-
tant quantity scientifically because the planetary bound-
ary layer is that part of the atmosphere most immedi-
ately and directly affected by the flux of CO2 between the
surface and the atmosphere. Fluxes should be correlated
with changes in PBL CO2 amounts. Satellite observations
from OCO and AIRS offer an unprecedented opportunity
to quantify PBL CO2 globally and systematically, but only



if their data can be properly combined.

This article is organized as follows. In the next section
we provide some background on spatial statistics. This is
followed by a somewhat more technical discussion of krig-
ing and Fixed-Rank Kriging, and then some details about
how we can use our model to correct for measurement bi-
ases and different supports in the observations. In Sec-
tion VI we describe the extension of FRK to full spatial
statistical data fusion, and in Section VII present the re-
sults of our fusion of AIRS and synthetic OCO. Finally, we
conclude with a critique and discussion of next steps.

II. BACKGROUND

Remote sensing data are by their very nature, statis-
tical. Satellite instruments do not directly observe geo-
physical variables, they observe radiances from which geo-
physical information is inferred. Observations from space
are typically made on spatial units coincident with instru-
ments’ pixels, while the true physical process is continuous
in space. This discretization of the scene is one source of
uncertainty. Another source is that the instrument itself
adds measurement error at the pixel level. This error in-
cludes both bias (“systematic” error) and variance (“ran-
dom” error). Finally, there may be additional bias and
variability due to the inability of the instrument to observe
under certain conditions (e.g. clouds). These relationships
are illustrated in Figure 1.

Fig. 1. Remote sensing data and their relationship to the true quan-
tity of interest. The left panel shows the true geophysical field (A).
(B) shows the field as it is viewed by a remote sensing instrument.
The image is pixelated because each pixel is the average of the true
values in (A) belonging to it. The instrument has measurement er-
ror, so (C) shows the image corrupted by noise. Noise is assumed
to be independent from pixel to pixel. Finally, some pixels may not
be observed at all due to instrument observing characteristics (e.g.,
some instruments can’t see through clouds). (D) shows the image
under these conditions.

The problem is that we only have access to information
like that in panel D in Figure 1, and we want to infer the
true continuous field in panel A. We can do this using a
spatial statistical model that relates the observations in
panel D to the true field in panel A.

Inference from spatial data requires a spatial statistical
model. The spatial model is no different than any other
statistical model except that the variables in it pertain
to specific locations rather than people or other objects.
Consider a simple linear regression model relating people’s
heights to their weights. If height and weight are assumed
to be jointly normally distributed, then a regression anal-
ysis exploits the estimated correlation between these two
variables. The optimal estimate of the weight of a ran-

domly selected individual from the population used to de-
rive the model is the mean of the conditional distribution
of weight for the new person’s height. The uncertainty of
that estimate is the standard deviation of the conditional
distribution.
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Fig. 2. Making inferences by exploiting spatial correlation.

The same principle applies in a spatial context, as illus-
trated in Figure 2. The top left graphic shows a square
spatial domain with two locations, s; and ss, identified by
the blue dots. The true values of the geophysical quan-
tity of interest are Y7(s1) and Y3(s2) where Y7 and Y5 may
represent either two different underlying processes or the
same underlying process (Y; = Y3 =Y). The top right
graphic shows the conditional distributions of Y3 (s;) for
specific values of Y3(s2) under the assumption that Y3 (s1)
and Y3(s2) are jointly bivariate gaussian. The top-down
view of that joint distribution is shown in the graphic on
the bottom right. The blue line is the regression line, which
runs through the means of the conditional distributions in
the center panel. If we know what happened at so, and
its correlation with s1, we can estimate the value of Y7 (s1)
and attach an uncertainty to that estimate. In fact, if we
knew the values of Y5 at multiple locations in the domain,
say M locations, that would allow us to make better in-
ferences. The joint distribution in Figure 2 would then
be (M + 1)-dimensional, and the conditional distribution
used to estimate Y7 at the location of interest would be an
M-dimensional slice.

Remote sensing data pose two complications for the im-
plementation of this estimation procedure. First, gener-
ally we do not observe at point-level. Satellite instruments
observe averages of Y over pixel-size areas called foot-
prints. Second, satellite instruments have measurement er-
ror which can impart bias and additional variability. These
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relationships are expressed in the equation

1

ZBE) = BE ueB(s)

Y (u)du| +€(B(s)), (1)

where B(s) is the instrument’s footprint centered at loca-
tion s, Z(B(s)) is the observed value over that footprint,
|B(s)| is the size of the footprint, and e(B(s)) is the mea-
surement error. Note that the measurement error term at-
taches to the footprint. Equation (1) relates the observed
value, Z, to the true values from which it is constructed,
Y (s), s € B(s), and e. Inferences about Y’s can therefore
be made on the basis of Z if we have or assume some in-
formation about the characteristics of e. The situation is
similar to that depicted in the multivariate version in Fig-
ure 2, except that the axes corresponding to the predictors
(the Y3(s2) axis in Figure 2) are a set of Z values corre-
sponding to observations. This is shown in Figure 3. The
predictand is still Y'(sq) since our objective is to make an
inference about Y at a point location. The fact that the
observations are aggregates, and the additional variation
due to the variance of € cause the variances of the condi-

tional distributions to increase. Nonetheless, there is still
a linear statistical relationship between Y7(s) and the set
of Z’s owing to the correlations among these quantities,
that can be exploited.

slices of the joint pdf of Yi(s1) and Z(B(s2))
at fixed values of Z(B(sz)).

Fig. 3. Making inferences by exploiting spatial correlation between
a point location (s1) and a block-level measurement (Z(B(s2))).
B(s)2) is the block-level footprint centered at point location sz, and
Z(B(s2)) is the data value associated with that footprint.

The optimal linear estimator (unbiased and minimum
variance) of Yi(s1) is derived in Chapter 3 of [1], and is
called the ordinary kriging estimator. It is widely used in
geostatistics, but for remote sensing applications, there are
some aspects that are problematic. The derivation of the
kriging estimator requires the inversion of the covariance
matrix describing the relationship between the observed
data points, and of the covariance between the quantity
of interest, Y(s), and the observations. Because remote
sensing datasets are often massive, inversion of the covari-
ance matrix of the Z’s is difficult if not impossible. To get
around this, usual practice is to assume that the covari-
ance is isotropic (the same in all directions) which allows
the covariance matrix to be simplified in a way that allows
for easy inversion. However, isotropy is a very tenuous
assumption for most geophysical processes. A second sim-
plifying assumption is that the covariance is stationary,

which legitimizes deriving and employing a single estimate
of the covariance matrix for use everywhere. Assuming
that the covariance structure is the same everywhere on
the Earth is also tenuous. To overcome these problems,
[2] propose specifying the spatial covariance matrix in a
way that does not require these assumptions, and permits
inversion of very large matrices.

III. KRIGING AND FIXED-RANK KRIGING

Kriging, first developed by Georges Matheron and D.G.
Krige [1], belongs to the family of least squares optimal
linear interpolators. We start with assumptions for the
spatial data generation process. Let {Y(s):s € D C R%}
be a hidden, real-valued spatial process, and let Z be a
vector of N point-level observations. Each element of Z
is generated as the sum of Y'(-) and an independent error
term, €(-):

Z(s)=Y(s)+e(s), seD. (2)

The error term €(-) is assumed to be a white noise process
with mean zero, and finite Var(e(s)) = o%v(s), where o > 0.
v(-) is assumed known, and allows for the possibility of non-
constant variance over the domain D. The hidden process
Y (+) is assumed to have a linear mean structure:

Y(s)=t(s)a+wv(s), seD. (3)

The first term on the right side of (3) accounts for the lin-
ear trend, where t(-) = (¢1(-),...,tp(+)) is vector of p known
covariates, such as geographical coordinates or other inde-
pendent variables. «, the vector of linear coefficients, is
unknown, and will be estimated from the data. The pro-
cess v(s) is assumed to have mean zero and finite, non-zero
variance with spatial covariance function

Cov(v(u),v(v)) = C(u,v); u,veD. (4)

Combining the Equations (2) - (4), we have the following
general linear mixed model:

Z=Ta+d, d=v+e, (5)

where 6,v, and € are vectors of length N represent-
ing the corresponding processes evaluated at the avail-
able locations. T is an N X p matrix of the covariates
(t(s1)’,...,t(sn)’)’. The error term, §, is a combination
of the measurement error, €, and the spatial covariance
term, v. Assuming independence between € and v, the
covariance matrix ¥ = Var(d) is

¥ =C+0?V, (6)

where C = [C(s;,s;)] and V = diag(v(s1),...,v(sn)).

We are interested in the hidden true process Y(-) at a
location sg,sp € D. Traditional kriging solves for the best
linear unbiased predictor, Y(so) = a’Z, by minimizing

1Y (s0) — ?(So)Hz =[Y(s0) - a’Z||2.

[1] gives the following formulas for estimating of Y (sg) and
its mean-squared prediction error:

Y (so) = t(so)& +k(sp) (Z— Té), (7)



MSPE(Y (s)) = {C(s0,s0) — k(s0) Zk(so) + (8)
(t(s0) — T'k(s0))' (T'E™"T) " (t(s0) — T'k(s0))} 2,
where
a=(T's"'T)"'T's"'Z, (9)
k(so) = c(so)'= 7, (10)
and c¢(sg) = (C(so,81),...,C(so,sn))" is the vector of co-

variances between the process at prediction location sy and
the process at the observed locations corresponding to the
elements of data vector Z.

Optimal kriging coefficients require 3 and c(sg), both
of which in turn require knowledge of the covariance func-
tion, C(s;,s;). This quantity must typically be estimated
from the data. For small datasets, simplifying assump-
tions are introduced in order to estimate of C(-,-) [1]. Two
common assumptions are stationarity and isotropy. Under
stationarity, the covariance between process values at two
locations s; and s; is a function of the difference vector
between them. That is,

Cov(Z(s;), Z(s;j)) = C(s1 — s2).

If the process is isotropic, or uniform in all directions, we
can express this as a function of the distance between two
locations,

Cov(Z(s;), Z(s;j)) = C(d), d=|s; —sjl|.

Such simplifying assumptions are not suitable for re-
mote sensing data [3]. Physical processes on a global scale
tend to vary differently depending on geographical regions.
In addition, traditional kriging does not scale well with
data size because it requires inversion of the N x N co-
variance matrix 3, a procedure requiring O(N?3) compu-
tations. Fixed-ranked kriging (FRK; [2]) provides both
computational scalability, and flexibility in fitting a wide
range of covariance functions without requiring restrictive
assumptions.

Equations (7) - (10) show that computation of the krig-
ing coefficients requires the inversion of the covariance ma-
trix 3 = C+ 02V, Cressie and Johannesson [2] model

C(u,v) as

C(u,v) =S(u)’KS(v); u,veD, (11)

for some positive-definite matrix K. S(u) is the basis ex-
pansion of u into a fixed set of r (not necessarily orthogo-
nal) scalar-valued basis functions, S;(-). That is,

S(u) = (S1(u),...,S.(u)); ueD.

The notation S without an argument denotes the r x NV
matrix constructed by applying S(-) to all the locations in
the dataset: S =(S(s1),...,S(sn)).

The covariance model that combines Equations (6) and
(11) is nonnegative-definite, with v(s) = S(s)'n, where n is
an r-dimensional vector with Var(n ) = K. Consequently,
the data model in (2) can be written as

Z(s) =t(s) a+S(s)'n+e(s). (12)

The model for v(-) is called the spatial random effects
(SRE) model, and the full model with the linear mean
structure in Equation (12) is called the spatial mized ef-
fects (SME) model [2].

To invert ¥ = 02V 4+ S'’KS, observe that it can be
thought of as a rank-r update to the N x N diagonal ma-
trix, 02V. Using the Sherman-Morrison-Woodbury for-
mula [4],

5= (0?V) T -
(02V) I8 (K1 +8(o2V)718) 'S/ (0?V) L,

The inversion is exact for any covariance function in the
spatial random effects class. The procedure requires inver-
sion of K and (K~ +8/(62V)~!8), both of which are r x r
matrices. The number of computations required to invert
3 is O(Nr?), and grows only linearly with N. Cressie and
Johannesson combine the FRK covariance model with (7)
and (8) to produce the FRK kriging predictors and esti-
mates of their uncertainties:

Y (s0) = t(so)é + S(so)' KS(Z — Téx),
MPSE(Y (sg)) = {S(s0)’KS — S(so)' KSE 1S'KS(so) +
(t(so) — T'E'S'KS(sp)) (T'Z'T) !
(t(sg) — TS 'S'KS(s))} 2.
Y and K must be estimated from the data.

IV. ESTIMATING X AND K: CHANGE OF SUPPORT

The discussion in the previous section assumed that the
true quantity of interest and the measurements are taken
a specific point locations. That is, we observe at point
locations s;, and wish to make an inference at point loca-
tion sg. However, satellite data often correspond to areal
regions called footprints, and the following modified data
model would then be more appropriate:

Z = (Z(Bl);Z(BQ)7 . '7Z(Bn))/
1

Z2(B) = —
( ) |BZ| ueB;

Y (u)du+¢(B;), (13)

where B; = B(s;) is the footprint to which the observa-
tion applies. This is the average of the underlying pro-
cess over the spatial domain of B;, plus a random error
measurement term, €(B;) as shown in Equation (13). We
seek an estimate of the point-level covariance function,
C(u,v) = S§'(u)KS(v), which would allow us to predict
to any level of aggregation. The crucial term here is K,
which we can estimate from an examination of the covari-
ances among areal-level data.

Without loss of generality, assume that the process Y (+)
has mean zero. The covariance between two observations
with support By and B; is

Cov(Z(By),Z(By)) =

1 1
Cov ( Y(u)du, — Y(v dv) , (14
Bil Jues, ™ B S, ) 0
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where |B;| represents the area of footprint B;. Since the
measurement errors are assumed to be independent of each
other and of the Y’s, the covariance between footprints
reduces to the expression in Equation (14). Using the FRK
covariance structure,

Cov(Z(B )Z(Bl)
Bil |Bl/ueBk /B Cov (¥ (0), Y (v)) dudv,
1
|Bk| ueBkS( wdu K |Bl|/veBlS(V) ,
=S$(By) K S(By), 5)
where

S(B;) = (§1(Bi),§2(Bi),...,§T(Bi)),

. 5 1
v| Jue

Equation (15) is important because it expresses
the  covariance  between  aggregated  footprints,
Cov(Z(B;), Z(Bj)), in terms of the point-level co-

variance function C(-,-). Note that K was defined at
the point level. That is, S(s1) K S(s2) is defined as
the covariance between two point locations s; and ss.
Equation (15) indicates that the empirical covariance
matrix of the spatial aggregates Z can be written as the
product S(Bx)" K S(B)), where S(By) is the set of basis
functions {S;(-)} averaged over footprint Bj. Integrating
the basis functions over the pixel footprints allows us to
compute S, and subsequently estimate K.

To estimate K and o, we use detrended data since non-
detrended data, Z, would force K to capture both trend
and covariance thereby skewing the estimates. In the
absence of prior knowledge about spatial covariance, we
model the trend using the ordinary least squares estima-
tor,

a=(T'T)"'T'Z.
With an estimate of «, we can calculate detail residuals
D =7Z—-Ta , which reflect only the spatial random effects
process and measurement errors. Note that the bold D
denotes the vector of detail residuals, and we let D(s;)
denote the detail residual for location s;. (D, without an
argument, is the domain of the dataset). Following [2], we
partition the domain, D, into M subregions, called bins,
with centers u;, 7 €1,...,M, and M << N. The bin
centers u; should provide good coverage of D. Around bin
center u;, we define a neighborhood N(u;) and a set of 0-1

weights,
! if s, € N(u;)
Wik = { 0 otherwise,
where k€ 1,...,N. Let w be an N x M matrix defined by
w = (w],...,w),), where w; is a row vector of length N,
w; = (wj1,...,w;N). W; is the binary vector for bin center

u;, indicating which of the N observations fall within the
neighborhood around u;.

[2] defines an N x N positive-definite empirical covari-

ance matrix 3 = [3(uy,u;)], where

S _ Vb(uy) =7
(s uy) _{ CDJ(DUi,juj) i F
and
Cp(u;,u;) =
N N
DY Wik, wik, D(sky) Disk, )/ (Wiln)(Wily),

ki=1ko=1
N
w;) =Y wirD(sk)?/(
k=1

S and V can be binned in a similar fasion. We define
the binned versions as S = Sw and V = Vw, respectively.
Cressie and Johannesson estimate K by minimizing

Wé].N).

12 -32(K,0)||Ir =
tr((ﬁ_E(K70—2>)I(2_E(K50’2))>7 (16)
where || || is the Frobenius norm. The K that minimizes

Equation (16), given known o2, is

*V)QR™Y,

where S = QR, Q and R via the QR decomposition of the
binned S. Measurement error variance can be estimated
by minimizing the following quantity with respect to o?:

K=R!Q(Z

> ((B-QQ$QQ) —*(V-QQVeQ),:)

Jik

where V is the binned version of V, and Q is the or-
thogonal matrix derived from QR decomposition of S.
(ﬁ) — QQ’ﬁ]QQ’)jk indicates the element in the jth row
and kth column of the matrix (£ — QQ'3QQ’) [2]. Note
that this is simply linear regression with slope o2, and in-
tercept zero.

Finally, the covariance between the spatial aggregates in
Z and the process at point location s, Cov(Z,Y (s)) = cs,
is an N-vector with elements,

|B|/ u) K S(s) du,
=S(B) K S(s).

Cov(Z(B;),Y

V. CORRECTING FOR BIAS

As with any imperfect measurement, the potential exists
in satellite observations for bias. If the bias is known, we
can correct for it in the solution to the kriging equation.
Assume that bias is multiplicative:

E(e(s)) = cp,
Var(e(B,)) = o?,

where ;1 =E(Y(s)). The bias parameter, ¢, is generally es-
timated by regressing satellite observations on coincident



validation data. We then solve the kriging equation by
minimizing mean-squared prediction error with the addi-
tional unbiasedness contraint on the kriging coefficients, a.
Thus, we minimize

1Y (s0) — Y/(SO)HZ =Y (so) — a'Z||?
subject to

E(Y(s))=p=E(@'Z)=E(Y(s)),
p=aly(l+c)p
0=a'ly(l1+c)—1.

This system can be solved using the method of Lagrange
multipliers. The kriging coefficients, a, and the Lagrange
multiplier, m, can be found by solving the matrix equation,

13-

The solution will have the same form as (7) and (8), except
that the kriging coefficients a will be different as a result
of the constraint:

Y 1y(l+o)
[ 1v(1+c¢) 0

a= (2*1 +3 My 40) (11 + oS y(1+0)
Iv(1+e)= Ne(s)) +E "1 +c) (-1y(1+e)=7"
Inv(1+¢) "1 4=t

VI. SPATIAL STATISTICAL DATA FUSION

The previous section discussed how to make opti-
mal, point-level inferences from aggregated, footprint-level
data. In this section, we describe a natural extension of
that procedure for making optimal, point-level inferences
from multiple footprint-level input data sets that may have
heterogeneous geometries and other error characteristics.
We call this Spatial Statistical Data Fusion (SSDF; or, in-
terchangeably, geostatistical data fusion). First, however,
we must clarify what we are trying to estimate.

In Section IT we noted that the measurements taken at
different locations may be measurements of the same quan-
tity (Y = Y7 = Ys) or of different quantities (Y; # Y5).
Mathematically, the more general case is that Y; # Yo,
and we may be interested in simply inferring the pair
(Y1(s),Ya(s)) at location s, or inferring the value of some
function of them, g(Y1(s),Ya(s)).

Let Z; be a realization of process Yi(+), and similarly let
Zs be a realization of process Y3(+), with

Z; = (Z{(Bi),Z;(Bi2),...,Z;(B;n,))
1

ZE) =18 e
] Jueb;;

Y(u)du —+ ei(Bij)a

where B;; represents the jth footprint from dataset i. We
also assume a multiplicative bias model:

E(ei(Bij)) = cip,
Var(ei(Bij)) = 012'

At every point location s, we estimate the vector of under-

lying processes,
) - ( ) S

Y(s) = (

The coefficient vectors a;js are unknown. The subscript
i in a;;5 denotes the index of the process, the subscript j
denotes the index of the dataset, and s denotes the loca-
tion. We solve for the optimal coefficients by minimizing
the mean-squared prediction error (MSPE) of Y (-):

Yi(s)
Ya(s)

A /
ay15Z1 +ajo

! /
ay15Z1 +ayyZo

N 2 . 2
E[(i(s) - Yi(s) + (Fa(s) - Yals)) |, (18)
with the unbiasedness constraints,
E(Y/l (S)) = alllslNuul +a/1251N2/’L2 = M1,
E(E(S)) :a/le]'N1M1 +a/2251N2:U’2 = M2, (19)

assuming, for the moment, that uq and pe, are known. We
will address this assumption in more detail below in Sub-
section B. The optimal fusion coefficients are obtained by
forming the lagrangian from (18) and (19), and differenti-
ating with respect to ajis, ajos, a21s, and ages. The full
derivation is given in [3], and the result is

a1, = Al_l(Bil +Cim),
ai2s = Ay ' (Bio + Cam). (20)
m is the lagrange multiplier:
_ (13, AT'Ba (14 c1) + 13, A5 "Bia(1+ c2))
(1, AT C1 (14 ¢1) + 1, A7 Ca(1+c2))

)

and

A1 (IN1 — 21_1121222_21221), an N1 X N1 matrix,

AQ = (IN2 — 22_2122121_11212), an N2 X N2 matrix,
)

_ . | . .
B, = 2111 (Ci1s — 2123095 Ci25), an Np-dimensional vector,

B, = 2;21(ci25 — Egliillcils), an N,-dimensional vector,
.1 - > —1
Cir=-3% (In(I1+e1) = B12Xy 1y, (1+¢2)),
an Ni-dimensional vector,
. —1 = o —1
Co =35 (In,(1+c2) =31 Xy Iy, (1 + 1)),
an Np-dimensional vector,

where ¢;j5 = Cov(Yi(so),Z;), Iy, is the N; x N; identity
matrix, and X;; is given by the FRK covariance model,

Cov(Zi(Bu), Z;(Bjx)) = S(Bu)'Ki;S(Bj1) + 62V, (21)

Having solved for the optimal coefficient vectors a;;s, we
can estimate the vector of processes, Y(s), by substitut-
ing a;js into Equation (17). The mean-squared prediction
error for Y;(s) may be obtained by

MPSE(Y;(s)) = a},,Var(Z1)a;is + aly, Var(Zs)asss+
Var(Y1(s)) +2a’Cov(Z1,Zy)ass—

2a’,Cov(Z1,Y1(s)) — 2a5,Cov(Z2,Y1(s)). (22)
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There are several issues specific to the fusion of data from
multiple processes that must be addressed. These include
estimation of the matrix K and unbiasedness constraints.
We discuss these considerations in the next two subsec-
tions.

A. Estimating K for two processes

Obtaining robust estimates of the empirical covariance
matrices generally requires large amounts of data. In prac-
tice, having large datasets is crucial to our calculations,
as the massive number of observations allows for robust
and stable estimates of the cross-covariance matrices with-
out relying on simplifying assumptions such as stationarity
and isotropy. The derivations above do not specify a co-
variance model for 3;;. We assume the FRK covariance
model, since it possesses required scalability and change of
support properties. However, with two processes to be es-
timated, we require three different r X r matrices to capture
the covariance functions. Let K;; model the covariance in
dataset 1, Koo the covariance in dataset 2, and Kq5 the
cross-covariance between the two datasets. The relation-
ships between the covariance matrices and their respective
FRK models are:

11 =S1K11S1 + 07 Vi,

12 = 81K 128y,

o1 = S5K01Sy,

oo = SLK 2285 + 02 V.
The parameters K;; may be estimated by a procedure sim-
ilar to the one described in Section IV.

In this section we assume that the data are observed

at point support. It is not difficult to adjust two-process
SSDF to accommodate areal-level input data. Using the

FRK covariance structure, the covariance between the pro-
cess at any two areal-level inputs, B; and By, is

C(B;, By) = /

uebB;

S(u)'duK S(u)’du.

ucBy
Therefore, corrections for change of support can be incor-
porated by integrating the function S(-) over the relevant
footprints as in Section IV.

B. Unbiasedness constraints for two processes

Earlier we assumed that the mean parameters, p; and
L2, are known. In reality, this is usually not the case.
Though it is possible to estimate them, the estimates are
often unstable [1]. Alternatively, under certain assump-
tions, the parameters can be removed without estimation.
See [3] for discussion. In general, however, without prior
knowledge of p; and ps, the unbiasedness constraint in
(18) reduces to the following more general constraints:

/
a1y p1 = pa,

a;lslNl =1 (23>
and
a§2slN2/L2 = M2,
5[22511\[2 =1. (24)

Therefore, in the absence of knowledge about 11 and po, we
can maintain the unbiasedness constraints by adding four
Lagrange multipliers terms instead of two. The derivation
then parallels that leading to Equations (20) with one dif-
ference: inversion by block must be applied two extra times
to solve for the additional Lagrange multipliers. (Again see
(3] for details.)

The unbiasedness constraints given by (23) and (24) lead
to a solution that amounts to ordinary co-kriging. Ordi-
nary co-kriging is co-kriging with the assumption that the
two datasets have constant and unknown means [1]. Note
that this solution is not optimal for the special case where
Y1 () = Ya(+), since it does not exploit the fact that p; = ps.

Finally, if the bias characteristics of €;(B;;) are known,
we can correct for measurement bias as we did in Section V.
If the measurement error terms ¢;(B;;) have

E(ei(Bij)) = cipi,
Var(e;(By;)) = 07,

then we correct for multiplicative biases by modifying (19)
as follows:

E(Yl (S)) = ClalllslNllu’l + 023/12511\/2,[1,2 = M1,
E(Yz(s)) = crag;s1n, p1 + coanos 1N, pra = pra.

In the single dataset case in Section III the measurement
error variance, o?, was estimated along with K, and the
bias, ¢; was assumed known. Here, o2 could be estimated
along with K;; as before. However, if the biases are not
known, they must be estimated by comparison of measure-
ments to ground truth. In that case, an alternative is to
estimate o7 from those validation data at the same time
as we estimate bias.

C. FEstimating a Linear Combination of Two Processes

In certain applications, it may be necessary to esti-
mate a linear combination of multiple processes, where the
weights are known, but the data for the processes are ob-
served individually. Suppose we have two datasets, Zq
and Zs, generated from two process, Y1(-) and Y3(-). For
location s, we wish to construct an estimate of Yy, (s) =
w1Y1(8) + waYa(s), where the weights w; are known. One
approach might be to separately estimate Y7 (s) and Ya(s),
and combine them. This is, however, suboptimal, since
it does not exploit the covariance between the two pro-
cesses. Another approach is to construct a new dataset
W(s) = w1 Z1(8) + waZ3(s) and estimate Y, (-) from W.
This approach only works if the datasets are observed at
the same locations and with identical footprints.

To estimate the process Y,,(s) at location s, we use

Y (s) = wy (a}15Z1 + al9sZo) + wa (aysZ1 + Ay Zo) .

We use the machinery of Section VI to derive an 2 X
1 vector of estimates of the processes, (Yi(s),Ya(s))’,
and an 2 x 2 mean-squared prediction error matrix,
Var((Y1(s), Ya(s)) — (Yi(s), Ya(s))’), at location s. The es-
timate and the mean-squared prediction error for Y, (s)



can be computed through simple matrix multiplication:

Vi (s) = w1 Y1(8) + w2 Ya(s) = (wy,ws) - < hi(s) >7

) Ya(s)
MPSE(Vy(9) =
o) (1)) e

VII. FusING CARBON DIOXIDE MEASUREMENTS FROM
OCOL aND AIRS

To illustrate the methods described above, consider esti-
mating the difference between total column carbon dioxide
(CO2) measured by an instrument like OCO (the Orbit-
ing Carbon Observatory), and carbon dioxide in the mid-
troposphere and above measured by the Atmospheric In-
frared Sounder (AIRS). If both instruments had the same
footprints and the same sampling characteristics, the dif-
ference between their measurements would be the amount
of CO2 below the troposphere:

Yi(s)
Y2 (S)

Y (s) = Yi(s) — Ya(s).

This is an important quantity scientifically because it
roughly corresponds to the amount of CO2 in the plan-
etary boundary layer (PBL). The PBL is that portion of
the atmosphere that is dragged along by the rotation of the
Earth, and is most directly affected by flux of CO2 between
the surface (land and ocean) and the atmosphere. Fluxes
should be correlated with changes in PBL. CO2 amounts.
Satellite observations from OCO and AIRS offer an un-
precedented opportunity to quantify PBL CO2 globally
and systematically, but only if their data can be properly
fused.

A. Input Data

Figure 4 is a schematic diagram of AIRS and OCO hor-
izontal and vertical sampling. AIRS is on the Aqua space-
craft, and observes CO2 in the mid-troposphere and above
on 90 km footprints. The AIRS sensitivity to different
parts of the atmosphere is illustrated by the blue curve in
the lower-right plot. AIRS data south of 60°S have not
been vetted by the AIRS CO2 team, and so we exclude
those values. To estimate AIRS measurement error char-
acteristics, we repeated a portion of the work performed by
the AIRS CO2 Validation Team, and compared AIRS re-
trievals coincident with in-situ aircraft flask measurements
in the mid-troposphere. We found that AIRS is unbiased
and has measurement error variance (3.43)% [5].

Due to the OCO launch failure, we use synthetic OCO
data (“OCO-Like”; OCOL) in place of actual OCO data.
We used geolocation information from the AIRS Level 2
Standard Product to compute the centers of footprints at
which OCO would have observed. These locations corre-
spond to an along-track strip of four, 1.1 x 2.25 km pix-
els down the middle of the center footprint of each AIRS
granule. We assigned times 15 minutes ahead of the times
associated with the AIRS center footprints, and gave all

OCOL footprints cloud fractions equal to the cloud frac-
tion of that center AIRS footprint. We then simulated
OCOL measurements for pixels with cloud fraction less
than .50, and only in daylight. The simulated values are
downscaled from coarse resolution Parallel Climate Trans-
port Model (PCTM) output as described in [6]. The OCO
vertical sensitivity, shown by the red curve in the lower-
right of Figure 4, was captured prior to downscaling by
summing PCTM CO2 values over 28 vertical levels using
the same pressure weighting scheme as would have applied
for OCO. Finally, we assumed measurement error had no
bias and variance of 2.25 ppm based on previous experi-
ence of our science advisors who have worked with PCTM
for some time.

1.1 km <%
ococoz HMEF

AIRS footprint grid coz___
footprints

<+—— OCO track I 2.25km

AIRS CO2 ™~ |
footprint 0CO CO2 [

footprints

02 o0 o5 08
............. (rormalzed to maximum)

Fig. 4. Schematic diagram of AIRS and OCO horizontal and vertical
sampling.

There are two important things to note about Figure 4.
First, there is a vast spatial mismatch between footprints
from the two instruments. A naive strategy would be to
average all OCO footprints belonging to a given AIRS foot-
print and declare that the AIRS and average OCO values
are commensurate, but this completely ignores the indi-
vidual strengths of the two missions’ designs, and does not
account for the fact that the OCO footprints are only com-
parable to the center of the AIRS track.

ATRS has a coarse footprint, but near-global coverage
every day. OCO has a very fine footprint, but poor daily
coverage. For SSDF, these differences are an advantage
rather than a disadvantage: we exploit the complemen-
tary nature of the two instruments’ sampling to produce
fused estimates that acknowledge spatial variability and
achieve good coverage. Temporal mismatch is not partic-
ularly extreme here- just 15 minutes, but we are currently
working to incorporate time into SSDF based on new work
by Cressie and collaborators [7]. This will be important
for applications where there are substantial temporal dif-
ferences between observation times.

The second important thing to note in Figure 4 is that
the vertical sensitivities of the two instruments (shown
in the lower-right of the figure) are fairly similar in and
above the mid-troposphere. In fact, neither instrument is
uniformly sensitive there; both sensitivities decay rapidly
with altitude. If the target of our inference is uniformly
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weighted CO2 concentration, one could plausibly make the
argument that both OCO and AIRS are biased measure-
ments of this quantity, though they are biased in different
ways owing to the difference between their sensitivities in
the PBL. The nature of those biases is quantified by the
expected values of the measurement error terms, ¢;, which
would have to be estimated from ground truth informa-
tion. We have defined our target not as total column CO2,
but as PBL CO2 thus avoiding the need to quantify bi-
ases relative to a single, unobserved quantity (uniformly
weighted total column CO2). Instead, we regard OCO
and AIRS measurements as biased observations of two dif-
ferent quantities, a function of which (the difference) is the
object of interest.

OCOL, May 1-3, 2003

376.98 405.58

Fig. 5. Synthetic OCO observations of total column CO2 for May
1-3, 2003. The color scale represents parts per million (ppm).

369.7

3825

Fig. 6. Actual AIRS observations of CO2 in the mid-troposphere
and above for May 1-3, 2003. The color scale represents parts per
million (ppm).

We applied the methodology described in Section VI us-

ing = 396 bisquare basis functions [3] to 89, overlapping,
three day blocks of data from AIRS and OCOL for the
period May 1, 2003 to July 31, 2003. The raw data for the
first three day block, May 1-3, 2003, are shown in Figures 5
and 6. The second three day block is May 2-4, and so on.
Besides the region south of 60°S which was deliberately
excluded, AIRS has fairly dense coverage, but with several
prominent gaps. OCOL presents a regular pattern with
swaths that pass through but do not completely cover the
AIRS gaps.

B. Fusion Results

Figures 7 and 8 show the results of fusing AIRS and
OCOL for the three days May 1-3, 2003. Figure 7 shows
the optimal estimates of PBL CO2 at each location of a
1° x 1° grid. That is, we chose a 180° x 360° grid of loca-
tions, s at which to apply our algorithm. Figure 8 shows
the corresponding +MPSE for each estimate. The color
scales of the maps have been truncated at the maximum
values of 25 ppm and 0.5 ppm respectively to avoid skewed
color scales that would be caused by a few outliers.

-150 -100 -50 0 50 100 150
I
0 25 lons

Fig. 7. Fused estimates of PBL CO2 for May 1-3, 2003. Estimates
are made at the centers of one degree grid cells. The color scale
represents parts per million (ppm).

Several features in the two maps are worth mention-
ing. First, in northern hemisphere summer we expect low
CO2 values in the northern hemisphere due to the CO2
draw-down when vegetation foliates. Second, there is a
pronounced area of low PBL CO2 over eastern Siberia,
but these estimates also have relatively high uncertainties
(values of VMPSE). There is also an area of relatively high
PBL CO2, also with high uncertainty, over western China.
In general areas where AIRS was sparse have higher un-
certainties than areas where AIRS was dense. This is to
be expected, since in these areas the estimation procedure
relies more heavily on a combination of spatial interpo-
lation of AIRS and the small amounts of OCOL present.
This effect will be less where there is strong spatial corre-
lation in the AIRS data. Finally, we could have estimated
PBL CO2 in the region south of 60°S. Since there is no
data there, estimates would have been based exclusively
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Fig. 8. Square root of the mean-squared prediction error for the

estimates in Figure 7. The color scale represents parts per million
(ppm).

on data in the bordering areas, and on the strength of spa-
tial correlations between those data and the target region.
Uncertainties would be high for such extrapolations- we
can see that already in the higher values of the square root
mean-squared prediction errors just below 50°S.

C. Computation

The analysis discussed in this article was carried out
on a MacBook Pro laptop computer with a dual core,
3 GHz Intel processor. The computation time for each
three day block of data was approximately five minutes, of
which roughly half was consumed by the computation of
mean-squared prediction errors for the estimates. We used
r = 396 bisquare basis functions at three different levels
of resolution, and a 1° x 1° grid of estimation locations.
This was chosen because 1° is approximately the size of an
AIRS footprint (at the equator). Predictions on finer grids
are certainly possible, but would be more computationally
intensive.

VIII. SUMMARY AND CONCLUSIONS

We have produced fusion estimates of planetary bound-
ary layer CO2 and their associated uncertainties on a one
degree, spatial grid from three months of actual AIRS CO2
retrievals and synthetic OCO based on climate model out-
put. We chose to break these data into 89, overlapping
three day blocks to smooth out transitions from one block
to the next. Three days is enough time to obtain a fairly
complete dataset, and is also a short enough period that it
can be regarded as a snapshot of current conditions. We
made various choices such as the resolution of the output
grid, the number of basis functions, the methods of esti-
mating key parameters, etc. which can be debated, but
our goal was to demonstrate the viability of our approach.

The obvious outstanding question is how do we validate
these results? How do we know if our estimates are ac-
curate? In principle, our uncertainties provide a measure
of the average (squared) differences between our estimates

and the true values, but many assumptions went into the
calculations of both the estimates themselves and those
uncertainties. We can perform various tests to check those
assumptions (see [3]), but the gold standard would be to
obtain independent, ground truth measurements of PBL
CO2 at a representative set of locations and times. Such
data are available only for a very limited set of cases for
PBL CO2 (one location at Park Falls, WT at present), and
this will not change significantly in the near future. Instru-
ment validation teams routinely rely on such sparse ground
truth sources because they have no choice but to use what
is available.

An alternative validation strategy is to work entirely
with synthetic data. That is, to downscale model output
to fine resolution, then aggregate this information to mimic
the resolutions of the instruments, and add synthetic mea-
surement error. Then, we could fuse the synthetic observa-
tions to obtain estimates and their uncertainties and com-
pare these results to the downscaled model data. We had
to do that already for OCO, and will now move to this
strategy in general by doing the same thing for ATRS. This
will allow us to study the behavior of our method under
different circumstances, and quantify performance trade-
offs for different algorithmic choices.

Our next development efforts will be devoted to incorpo-
rating time into this methodology. Existing work on Fixed-
Rank Filtering [7] forms the basis of spatio-temporal data
fusion (STDF). We expect this to provide an improvement
over the naive strategy of simply breaking the data into
fixed blocks. The main question will be the computational
cost and feasibility of such an approach.

In closing, we note that this data fusion methodology
and algorithm have wide applications to remote sensing
data. We have concentrated thus far on the fusion of geo-
physical products, but there is no reason why one would
not want to fuse Level 1 radiance products prior to per-
forming joint retrievals, for example. This would be prefer-
able to naive “match-up” as a way of merging data sets
with different spatial, temporal, and other statistical char-
acteristics. Another important application area is the com-
bination of two instrument records that may or may not
overlap in time. This will be the case for AIRS, OCO,
and ASCENDS when ASCENDS starts to provide infor-
mation later this decade. A number of NASA’s Decadal
Survey missions could potentially benefit from our fusion
methodology, either because they inherently involve multi-
ple kinds of observations, or because they are intended to
extend existing data records.
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